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INTRODUCTION

This is the first quarterly update, for 1978, in Heat
Pipe Technology. .

The major portion of this quarter's activity has been
in the areas of heat pipe applications in aerospace
and nuclear systems. The categories of general theory
and heat transfer have also experienced an increase in
activity.

We would appreciate any comments or suggestions that

you may have to contribute as we endeavor to make this
a more complete and reader responsive publication.

Gilbert A. Rivera
Technical Editor
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GUIDE TO USE OF THIS PUBLICATION

A number of features have been incorporated to help the reader use
this document. They consist of:

A TABLE OF CONTENTS listing general categories of subject content
and indexes. More specific coverage by subject title/keyword and
author is avallable through the approprlate index. ;
CITATION NUMBERS assigned to each reference. These numbers, with

the prefix omitted, are used instead of page numbers to identify
references in the various indexes. They are also used as TAC
identifier numbers when dealing with document orders; so please use
the entire (prefix included) citation number when corresponding

with TAC regarding a reference. 2n open ended numbering system
facilitates easy incorporation of subsequent updates into the organi-
zation of the material. 1In this system, numbers assigned to new
citations in each category will follow directly the last assigned
numbers in the previous publication. The citation number of -the

last reference on each page appears on the upper right-hand corner

of that page to facilitate quick location of a specific term

A REFERENCE FORMAT containing the TAC citation number, title of
reference, author, corporate affiliation, reference source, contract
or grant number, abstract and keywords. The reference source tells,
to the best of our knowledge, where the reference came from. If
from a periodical, the reference source contains the periodical's
title, volume number, page number and date. If for a report, the
reference source contains the report number assigned by the issuing
agency, number of pages and date.

An INDEX OF AUTHORS alphabetized by author's last name. A reference's
author is followed by the reference's citation number. For multiple
authors, each author is listed in the index. '

An INDEX OF PERMUTED TITLES/KEYWORDS affords access through major

words in the title and through an assigned set of keywords for each
citation. A reference's title is followed by the reference's cita-
tion number. 1In the indexes, all the words pertaining to a refer-
ence are permuted alphabetically. Thus, the citation number for a
reference appears as many times as there are major title words or
keywords for that reference. The permuted words run down the center
of an index page. The rest of the title or keywords appear adjacent
to a permuted word. Since a title or set of keywords is allowed
only one line per permuted word the beginning, the end, or both
ends of a title or set of keywords may be cut off; or, 1f .Space-
permits, it will be continued at the opposite side of the page until
it runs back into itself A # indicates the end of a title or set
of keywords while a / 1nd1cates where a title or set of keywords

has been cut off within a line. -
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[.  GENERAL INFORMATION, REVIEWS, SURVEYS

BP78 10000 INTERNATIONAL HEAT PIPE CONFERENCE, SECOND, VOLUMES 1 AND 2, 1976
Anon., (CNR, Rome, Italy), Int Heat Pipe Conf, 2nd, Bologna, Italy, Mar 3l-apr 2, 1976,

Publ by Eur Space Agency (ESA SP112), Noordwijk, Netherlands, V 2:877, 1976

This conference contains 74 papers dealing with all aspects of heat pigfes, from '
scientific fundamentals to commercial applications. The topics of the eleven technical
sessions are: gravity-assisted heat pipes; low-temperature heat pipes; liguid metal heat
pipes; heat pipe dynamics: variable-conductance heat pipes; rotating heat pipes; heat
pipe materials: evaporative heat transfer; terrestrial apvlications; zero-gravity testing;
and spacecraft applications. This conference appears as two volumes; most of the tech-
nical papers are included in Volume One, and Volume Two ccntains post-deadline papers, a
list of participants and an author index. Individual papers are indexed separately.

(HEAT TRANSFER, TEMPERATURE CONTROL, SPACECRAFT, OVERVIEW)

HP78 10001 HEAT PIPES IN EUROPE, THEIR DEVELOPMENT AND APPLICATION, A SURVEY
Brost, 0., Muenzel, W.D., (Stuttgar% Univ, TH, Germany, F.R.), Maschinemarkt, V 82:
513-517, N30, 1976, In German

The application of heat pipes has become of increasing interast due to their
extraordinary properties (high heat transfer properties with small temperature gradients,
spatial decoupling of heat sinks and heat sources and heat flow density transformation
almost without temperature drops) and the possibility of using heat pipes for %temper- -
ature control. There are many examples for the develovment and use of heat pipes in -
Europe. -

(HEAT TRANSFER, HEATING, REVIEW) ) :

HP78 10002 HEAT RECOVERY IN AIR SYSTEMS

(Heat and Vent Eng.), V 50:10, 12-14, NS94, 4 refs, Jan 1977 : -
Avail :TAC ’
No abstract available . -

(HEAT-PIPE, HEAT EXCHANGERS, OVERVIEW)

HP78 10003 HEAT PIPES

Jerman, R., Obz. Mat. Fiz., V 24:10-15, ¥1, Jan 1977,
The basic aspects of heat pipes are considered.

very low and variable thermal resistance,

In Slovene
These are conductors of heat with
Some applications are also mentioned.

{HEAT TRANSFER, OPERATION, OVERVIEW)

HP78 50004 HEAT PIPES: A NEW TYPE OF HEAT TRANSFER ELEMENT B

Riq@ter, W., (Technische Univ., Dresden, Germany,
Fujinka, V 41:632-533, ¥10, 1976, In German

A short description of the functioning of heat pipes is given. The author's own studies

on the use of network and artery heat pipes for heating, ventilation and air-conditioning are
presented. .

Sektion Energieumwandlung), Sanka to

- -

(NETWORX ARTERY HEAT-PIPES, HEATING, VENTILATION, AIR-CONDITIONING)

HP78 10005 GOVERNMENT FUNDING FOR HEAT PIPE RESEARCH PROMISES BENEFIT FOR

DIZCASTER
Oie Cast. and Met. Moulding (G3), ¥ 8:7-8, N1, 2 refs, Jan - Feb 1977 .
Avail:Tac . -
No abstract available -

(EVAPOPATOR DEVELOPMENT, SERVICE LIFE) )
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[T. HEAT PIPE APPLICATIONS ' |

II. A. GENERAL APPLICATIONS :

HP78 20000 CESIUM HEAT-PIPE NEUTRAL PARTICLE SPECTROMETER

Brisson, D.A., (North Carolina State Univ., Dept of Nuclear Engineering, Raleigh, NC), 1977,
TID-27705

A new method of examining the energy svectra of neutral particles escaping a magnetically,
confined plasma was examined experimentally. Electron capture collisions in a cesium charge
exchange heat pipe were used to attain conversion afficiencies more than two orders of magni-
tude greater than previously used stripping analyzers for neutral energies below 200 EV.
Efficiency curves for the cesium heat pipe were obtained experimentally for hydrogen and
deuterium using a coulutron ion beam system. The maximup hydrogen conversion efficiency
was 3.9 x 10-2 at 500 EV, and the maximum deuterium conversion efficiency was 4.2 x 10~2
at 100 EV. The hydrogen and deuterium efficiencies at 100 EV were 1.1 x 107< and 4.2 x
1073, respectively. Cesium loss rates were measured with a surface ionization gauge.
Neutral hydrogen enerxgy measurements were made on the Elmo Bumpy Toras, which is a toroidal
mirror machine located at Oak Ridge Natiocnal Laboratorvy. These neutral energy spectra
were unfolded to obtain ion temperatures for several plasma conditions. The ion tempera-. -,
tures obtained with the cesium heat pipe energy analyzer corresponded well to previous tem~-
perature measurements made with an Nj stripping analyzer.

(ENERGY SPECTRA, ELECTRON CAPTURE, CONFINED PLASMA)

K

HP78 20001 HEAT PIPE: APPLICATIONS

Jog, V., Mujumdar, A.S., (McGill Univ., Montreal, Canada), J. Inst. Eng. (India),
Chem. Eng. Div., V 57:83-88, N2, Feb 1877

Avail:TAC ) . .
The heat pipe consists essentially of a tube, a wick and a fluid that can transfer i
heat at a phenomenal rate. Because of its several unigue characteristics, the heat : ” -

pipe finds applications in diverse fields, ranging from solar energy utilization to
cryosurgery. The applications and limits of the heat pipe are described and two ‘
specific topics are discussed in scme detail, viz, applications pertaining to solar . i
energy utilization and uses of coaxial heat pipas. A partial list is provided by the ‘
various fields in which the heat pipe can be used effectively.

(COAXIAL HEAT-PIPES, ENERGY CONVERSION, HEAT TRANSFER) ’ \
|

II. B. ZINERGY CONVERSION AND POWER SYSTEMS

HP78 21000 METHANATION: WITH HIGH THERMODYNAMIC EFFICIENCY ENERGY RECOVERY i

Biery, J.C., (Los Alamos Scientific Lab, NM), 28 refs, Jan 1977 _

Heat pipes could be utilized in the process of mechanating synthesis gas from
ccal in two important ways. The first is in the methanator itself where the heat pipes
are used Zor catalyst cooling, temperature control, and high~temperature isothermal .
energy recovery. The second involves recovering thermal energy in the exit gas stream - -
from the Tethanator and u1sing it to preheat the wethanator inlet stream and also to
produce steam <rom condensed water £rom the exit stream. The methanator has thg follow~ B
ing unique characteristics. It is composed cf.a densg assembly og heat pipes with stacks _ -
of cylindrical pellets of a catalyst such as NLA1203 intimately dispersed among them. -
Nickel cconcentration in the catalyst stacks is varied £rcm 10 to 30 percent to limit the Lo
front end tamperarture witiin the methanator. Heat is extracted Irom the methanation -
reaction isothermally at temperatures apprcaching the upber cperating limit; of_;pe
catalyst - approximately 7350 to 300°X. Z=ner3y is transported 5y tle heat pipe into-a -
steam boiler where superheated steam is produced. The 20st methanaticn recuperator 1s -

a unigue three-chamber recuperatdr heat exchanger. Znergy is transpor=ed between the- - -
inlet and outlet gas streams Srom the metharnator in zhe lower champers interconnected -

with heat Sipes. In the upger chamber condensed water Zrom the axit gas stream is - 3
transferred sicher -0 the lnlet stream or %o steam from the condensed water. <Costs Of - -.
the methanator and the recuperator agcear <O be 3cmewhat lower than comparable -

so Matural Gas CTo., for their methanation plant at the Four -
Cornmers aresa. The amceian a< che neat 13otharmalle ac high “amperatuls and the
afficient recuperation of the energy between the inlet and outlet gas streams make the

Present unit attractive. .

units Zesigned by EZl P2
axer

[nd
&
<

(METHANATION, COAL GASSIFICATICN, CATALYST COOLING)
2 ' ‘ “
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HP78 21001 DEMAND SENSITIVE ENERGY STORAGE IN MOLTEN SALTS

Nemegk, J.J., Simmons, D.E., Chubb, T.A., (Naval Research Lab., Washington, DC), American f
Section of the International Solar Energy Society, Cape Canaveral, FL, Sharing the Sun:
Solar Technology in the Seventies, V 8, 1976, Boeer, K.W., ed.

) Heat-of-fusion energy storage and on-demand steam are obtained using heat pive tech-’
nigues to transfer heat £o and from stacked salt cans and onto boiler tubes within a
sealed "energy storage-poiler” tank for solar thermal pcwer plants,

(HEAT-OF-FUSION, ENERGY STORAGE, ENERGY STORAGE-BOILER, SALTS)

HP78 21002 CHEMICAL METHODS OF STORING THERMAL ENERGY

Offenhartz, P.0., (EIC Corp., Newton, MA), American Section of the International Solar
Energy Society, Cape Canaveral, FL, Boeer, K.W., ed., Sharing the Sun: Solar Technology
in the Seventies, V 8, 1276 - -

Thermal energy storage through chemical reactions is reviewed including second-law
restrictions and opportunities. Second-law cpportunities arise when the coliection tem-
perature exceeds the utilization temperature - in this case a thermochemically driven
heat pump can be used to deliver considerably more heat than is collected. Chemical reac-
tions can be chosen to fit the source and sink temperatures so as to amplifv the input
heat: A number of currently proposed methods (H; - generation and storage, hydration-dehy--
dration equilibria, chemical heat pipes, and ammcniacal salt pairs) are assessed with

respect to efficiency, cost, chemical feasibility, and suitability fer various collection
and utilization temperatures.

(CHEMICAL ZSAT-PIPE, CHEMICAL FEASIBILITY, TEMPIRATURE SUITABILITY) -

HP78 21003 SOLAR RESIDENTIAL ELECTRIFICATION WITH HIGH PERFORMANCE HEAT ENGINES

Salter, R.M., (american Institute of Aeronautics and Astronautics, NY), 1975
Avail:TAC . .

Application of high-performance closad-cycle heat engines to solar energy conver- E >
sion for residences and other buildings is considered. Stirling and recuperated - .
Brayton cycles are investigated with the former favored due to commonality in construction
with conventional small Otto cycle engines. Typical top temperatures of these cycles are
near best compromise between thermcdynamic efficiency vs. solar collection efficiency.
The overall system includes an array of sun-following paraboloidal collectors connected
by sodium heat pipes. Both heat and electrical buffering, control problems, accoutre-~
ments (such as heat pumps), other heat sources, and other electrical sources are examined.
Analogous conversion of furnace fuel energy into electricity is considered.

(BRAYTON CYCLE, STIRLING ENGINE, PARABOLIC REFLECTORS)

-

Hp78 21004 HEAT-PIPE BISMUTH LASER; EXAMINATION OF LASER ACTION AT 4722 ANGSTROMS IN
BISMUTH VAPOR .

Walter, W.T., Solimene, N., (Dep. Electr. Eng. Electrophys., Polytechnic Inst., Brooklyn,

NY), Gov. Rep. Announce. Index (U.S.), V 77:233, N15, 13977 . .

Avail:TAC . .
No abstract available

(BISMUTH HEAT~-PIPE, LASERS)

HP78 21005 VAPIPE - A PRACTICAL SYSTEM FOR PRODUCING HOMOGENEOUS GASOLINE-AIR i : -
MIXTURES

Harrow, G.A., Mills, W.D., Thomas, A., Finlay, I.C., (Shell Res Ltd, Chester, England),
SAE Prepr, 16 p., N760564 for Meet, June 7-10, 1976

The Vapipe is a device that has been developed jointly by Shell Research Limited,
Thornton Research Centre, and the National Zngineering Laboratory %o rzduce car exhaust
emissions and improve Zuel aconomy. It achisves better mixing of the charge enteripg
the engine by vaporizing the gascline in the inlet system. Heat for this purpose is _ )
conveyed from the exhaust system by means of a heat pipe. Two Vapipe systems have been - -
tested, one in which surplus heat from the exhaust is rejected to the cooling system

of the car and the second in which the boiler 2fficiency is varied to maintain the -
correct flow of heat <o the fuel vaporizer. Both svystems operate well but the latzef :
is very much cheaper to make than the fcrmer. The Vapice provides good mixture dis=- s
tribution and allows the engine to run smeothly at weaxk mixtures, thus permitiing -
improvements in fuel sconomy and reducticns in gxhaust emissions. JSubstantial senefits |
have been cbtained in practical installaticns, but these could be even greater iZ

)
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were developed in which the individual stringer survival probabilities were varied and :

the radiator system mass was calculated. Results are presented Zor system mass as a func-

tion of individual stringer survival probability for six candidate container materials,

three candicdate heat pipe fluids, two radiator operating terperatures, two meteoroid shield

typves, and two radiating surface cases. Results are also presented for radiator reject

heat as a function of system mass, area, and length for three system sizes. i ; -

(THERMOELECTRIC, NUCLEAR-SPACE POWER, CONCEPTUAL DESIGN)

HP78 21004 CONCEPTUAL DESIGN OF A EEAT PIPE RADIATCR -

< JA. 1os Alamos Scientific Lab., NM), Sept 1977, LA~-6939-MS i .
Benneg éogctpéuil design of a waste heat radiator hag been_develo?e¢ for a ;h;rmoe}ectizc 5
spacs nuclear power system. The basic shape of.the neat pipe radiator was 3 fuitam %h
a right circular cone. The design included stIanger heat pipes to carry reject heat Ifrom
the thermoelectric modules to the radiator skin that was composed of ;mall-dlameter, thin-
walled cross heat pipes. The stringer heat pipes we:e_armored to resist punctgre by a
meteoroid. The cross heat pipes were desigred to pgoylde the necessary unpunc.ure§
radiating area at the mission end with a minimum initial system mass. .Several design cases
carburetters or other fuel-metering devices were cdeveloped to take maximum advantage
of the homogeneous mixtures. Significant improvements in engine warxm-—up :zme,_drzveabxl-
ity, and flexibility of opera;tion are also achieved but power output is somewhat

reduced.

(AUTOMOBILE ENGINES, FUEL ECONOMY, HEAT-PIPE FUEL VAPORIZER)

II. cC. ENERGY CONSERVATION, SOLAR, NUCLEAR, AND OTHER ENERGY SYSTEMS

HP78 22000 A HEAT PUMP FOR THE INDUSTRY
- -
Bachmann, D., (VDI, Frankfurt, Germany), Ind anz, V 99:44-47, N3, 3 refs, Jan 12, 1977, . ; .
In German

The article describes the design and operation of a newly developed heat pipe system -
the so~called templifier - for the production of hot water (82%¢) by utilizing excess ~
heat from any available source of heat (32°C) which otherwise would be wasted.

(WASTE-HEAT UTILIZATION, TEMPLIFIER)

HP78 22001 HEAT PIPES FOR HOSTILZ EINVIRCNMENTS IN ENERGY CONSERVATION APPLICATIONS

Basiuli;, A., Ewell, G.I., (Hughes Aircraft Co., Torrance, CA), In Intersociety Energy
Convgrs;on Engineering Conference, 12th, Washington, DC, Aug 28 - 3evot 2, 1977, Proceedings,
American Nuclear Society, Inc., La Grange Park, IL, V 1:493-497, 1977, (A77-48701 23-44),
A77-48753 ’
Heat Pipes offar many advantages for potential use in anergy recoverv aopblicaticns
unrestri ted form Zactor, large choice of materials and material combinationél and =ach
heat Plpe can operate independently or in concert with other heat pipes in -he heat re-
covery unit. A program was initiated to develop heat pipes for hostile environments such
as sulfur plants and coal gasifiers. Eeat pipe materials and cotential coatings were
evaluated Ior corrosive and abrasive environments from 2009C t5 6000C. This study indi-
cated that heat pipes can be designed and buil:t for heat recoverwv, but compatibility data
in the environment was lacking, and that field test data is rtadly needed. A heat pipe -
test vehicle for data acquisition was designed, fabricated, and bench model tests have
been completed. A test vehicle is ready for field tests in sulfur plants and coal gasifiers.

(HEAT RECOVERY, CCRROSION RESISTANCE, EEATING ZQUIPMENT, MATERIALS) - T

HP73 22002  HEAT PIPE CEMTRAL SOLAR RECEIVER :n .

Biener%, W.3., (Sandia Labs., Albuguergue, M), Highlights report solar thermal conversion
preogram central power projects, Mar 1977, SAND--77-301l1 ) - .
A solar-to-gas neat exchanger for a central receiver cower olant is discussed.
potential receiver configurations and tvpical wick structures for ;
development are shown.

Three -
g n 1 ‘ 2 <he heat vives under
The perZormance of the tent wick hsatdipe is prasented.

_ S _ A con- |
ceptual design of a test module with a capaciity of 1 MWT is sketched. s

P

- |
(SOLAR-THEPMAL CCONVEIRSION, 30LAR-IAI HEAT IXCHANAEDS - :
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HP78 22003 HEAT PIPE CEINTPRPAL SOLAR PECZIVER, SEMIANNUAL PROGRESS REPORT, MARCH 1, 1976 -
AUGUST 31, 1976

Bienert, W.B., Wolf, D.A., (Dynatherm Corp., Cockeysville, MD}, MNov 1976
Avail:TAC

The objective of this program is the development of a solar-to-qas heat’ exchanger
for a central receiver rower plant. The concept is based on the use of heat pipes to
transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle
converslon system. An open air cycie with recuperator and a2 turbine inlet temperature
of 800°C (approximately 1500°F) was selected as the optimum choice. It yields a conversion
efficiency of approximately 32 percent and an overall solar-to-electric efficiency of
20 percent. The light weight of gas turbine equipment opens the possibility of tower

mounting the entire system. Three potential receiver configqurations have teen identified,

two of them being of the cavity type and one being an external receiver. The required
thermal diffuser heat pipes use ligquid metal as being of the cavity type and one being
an external receiver. The required thermal diffuser heatepipes use liguid metal as

the working £fluid. The optimum size is approximately 5 CM in diameter and 2 to 3 M in
length. The design axial heat flux is 10 MW/M° which corresponds to a heat transfer
rate of 20 KW ger heat pipe. The theoretical foundations of these heat pipes have been
developed and subscale protctypes have been tastad successfully. The radial and

The radial and axial

heat fluxes of the prototypes met and exceeded the requirements for the full-scale heat
pipes.

(BRAYTON CYCLE, KEAT-PIPE TESTING, HEAT TRANSFER)

HP78 22004 HEAT TRANSPORTATION BY HOT WATER PIPE-LINES AT 90 DEGREES CENTIGRADE

Bourguet, J.M., Fischer, H., Lancal, L., (Joint Publications Research Service,
Arlington, VA), Transl. Into English From Tech. De L'energie (France), p. 14-18,
N1, 1976, AD-A038301, CRREL-TL-376, N77-28453 ’
Avail:TAC ’

" This report describes the possibility of transporting heat produced by nuclear
power plants for urban heating distribution systems by means of water at 90 C.

(DISTRICT HEATING, URBAN PLANNING, HEAT-PIPE HEAT RECOVERY)

HP78 22005 ENERGY SAVING AND AIR POLLUTION CONTROL (WASTE HEAT RECOVERY FROM
INCINERATORS)

Burke, B., HANDV News, V 20:30-1, 33, 36, N6, June 1977
Avail:TAC

No abstract available

(WASTE~-HEAT RECOVERY, HEAT-PIPE RECUPERATOR)

HP78 22006 HEAT RECOVERY PAYBACK

Casey, C.S., (Isothermics, Inc., Augusta, NJ), Build Syst. Des., V 74:53-56, N3, 1377
Avail:TAC

The performance and economics of heat pxne neat recovery equipment, particularly
for institutional space heating and ventilation, are discussed. A numerical example
of payback considering savings affected in electric power, fuel oil, or natural gas
consumption is included. It is concluded that heat pipe aeat recovery systems are.
desirable and profitable.

-

(SPACE HEZATING, VENTILATICN, INSTITUTIONAL EQUIPMENT)

4P78 220C7 EVALCATION OF THE USE OF HEAT PIPES IN TOKAMAK FUSION REACTORS

Chi, J.W.H., (ZRDA, Washington, DC), (Westinghouse EZlectric Corp., Pittsburgh, PA), S
Technelegy of Centrolled Nuclear Fusion, Volume II, 1976

Avail:Tac - -

The use of heat pipes appears to0 have the potential for solving difficult 1eat P
transport problems in <okamak Zusion reactors. An analvsis was carried out %o
avaluate <he possible working Zluids. The results suggested the use of sulphur
and phosphorus. However, the effect of nuclear radiation on these materials is un- -
known and may present a problem.

fREACTOR C20LING, HEAT-PIPE TEMPER2TURE IINTECL: -



22012

¥pP78 22008 ANALYSTS, DESIGN, AND THERMAL P=PFORMANCI TESTING OF A HEAT PIPE FLAT PLATE
COLLECTOR

EZvans, R.D., Greeley, D.N., (Florida Technological Univ., Orlando, FL), American Section
of the Internaticnal Solar Energy Society, Cape Canaveral, FL, Proceedings of the 1977 Annual .
Meeting of the American Section of the International Solar Energy Societv, V 1, Sect 1-13,;
1977, Beach, C., Fordyce, E., eds. :

The analysis, design and thermal perZormance data is presented for a solar heat pipe
flat plate collector. theoretical model for a heat pive collector is prasented and can
be used to predict the thermal performance of such a solar energy collection device. A
discussion of the design of a prototype solar collector utilizing circular heat vipes
bonded to an absorber plate is presented. Preliminary verZcrmance data is oresented for
the prototype collector. The results of the thermal performance experiments indicate that
heat pipes can function as the heat <ransfer elements in a solar collector. However, the
experiments verify the crlt-call*y of the thermal resistances between the heat pipes,
absorber plate and the heat pipe, collection manifold device.

(THEORETICAL MODEL, THERMAL TEST DATA, HEAT TRANSFER ELﬁ&ENTS)

HP73 22€09 STUDY OF TECHNICAL OPTIONS AVAILABLE FOR RECLAIMING HEAT LOST TO THE ATMOSPHERE
FROM EXISTING MECHANICAL DRAFT COOLING TOWERS Final Report

(Gordian Associates, Inc., New York, NY), Nov 1976, PB-261752

This report investigates options available for the recovery of wasteheat currently
lost to the atmosphere from mechanical draft cooling towers. It lists a varietv of useful
purposes to which the warm water may be put. The use of heat pipes for more efficient
heat exchange is descxribed.

(WASTE HEAT RECOVERY, WASTE HEAT UTILIZATION) ;

HP78 22010 VAPIPE - A PRACTICAL SYSTEM FOR PRODUCING “OMOGENEOUS GASOLINE-AIR
o MIXTURES

Barrow, G.A., Mills, W.D., Thomas, A., Finlay, I.C., (Shell Res Ltd, Chester, England), .
SAE Prepr, 16 p., N760564 for Meet, June 7-10, 1976

The Vapipe is a device that has been developed jointly by Shell Research Limited, _
Thornton Research Cantre, and the National Engineering Laboratory to reduce car exhaust
emissions and improve fuel economy. It achieves better mixing of the charge entering
the engine by vaporizing the gasoline in the inlet system. Heat Zor this purpose is
conveved from the exhaust system by means of a heat pipe. Two Vapipe systems have been
tested, one in which surplus heat from the exhaust is rejected to the cooling system
of the car and the second in which the boiler efficiency is varied to maintain the
correct £low of heat %o the fuel vaporizer. 3oth systems operate well but the latter
is very much cheapver %o make than the former. The Vapipe provides good mixture dis-
tribution and allcws the engine to run smoothly at weak mixtures, thus permitting
irprovements in fuel economy and reducticns in exhaust emissions. Supbstantial benefits
have =e=n cbtained in practical installacions, tut these could be even greater if
Carburetters or otiaer fuei-metering devices were cavelcred to take maximum advantage
¢f the hcmcgeneous mixtures. S:gnificant :improvements in engine warm-up time, driveabil-
ity, and flexibility of opera;j;tion are also achieved but power output is somewhat
reduced.

(AUTOMOBILE ENGINES, FUEL ECONOMY, HEAT-PIPE FUEL VAPORIZER)

HP78 22011 ENERGY RECOVERY SYSTEMS FOR HOSPITAL USE

Kensett, R.G., (Welsh Health Tech. Services Organization, Cardiff, Wales), Hosp.

Eng., V 30:3-12, July 1976

Avail:TAaC - -t
No abstract available .

(HOSPITAL ENGINEERING, TEERMAL WHEEL, HEAT-PIPE RECUPERATOR) : B

iP78 22012 APPLICATION OF HEAT PIPES TO GRCUND STORAGE OF SOLAR ENERGY - -

Xroliczek, £.J., (B & X ZIngineering, Inc., Towson, MD), Yuan, S.4., Bloom, A.M., -(George
Washington Universitzy, Washington, DC), american Institute of Jeronautics and Astronantics

Thermophysics Conrference, 12th, Albuquerque, ¥M, AIAA paper 77-729, & P., Sune 27-29, ,
1977, A77-39507 c-

A 1eac ;ipe concept design for application to resi encxal solar energy storage :
nas been develoged. The Sasic feasibilicy of ihe concent hias teen Zemcnstrated in -
orototypre testing at George Washington TUniversity. The design incorporates the
simplicity and nigh a2ffic: enc1 of the heat 2ize =ogetiher with current heat pipe thermal )
control technigues and an 2xt al pump 2~sist for liguid return acainst gravity:s As
ccnfigured the heat pige system provides che capability 9f transferring heat Zrom solar
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collectors to an energy storage area and points of utilization within a single heat
transfer element. All control farncticns are inherent in the heat pipe construction
including automatic shutdown of the solar collector zone when positive net energy Zlow
is not achieved. Pumping power requirements are minimal ané needed only during solar
input periods. Future designs could utilize solar energy to drive the pump. Finally,
- the heat pipe system can be interZfaced with any one or combination of household heat
ransfer mediums including air, hot water or working fluids from air conditioners or
heat pumps. This paper describes the concept, the details of a prototype design and
the results obtained with a simulated ground storage tast system.

1
(KEAT-PIPE HEAT RECOVERY, ENVIRONMENTAL CONTROL, DESIGN) k
|

HP78 22013 SOME ASPECTS OF NATURAL GAS CONSERVATION

Proffitt, R., (British Gas Corp., London, England), Gas Eng. Manage., V 17:180-194, X 6,
Jure 1977, EDB-78-02

It is shown how the energy supply and utilization situation has changed over the years,
necessitating the urgent action for fuel conservation. Figqures taken from official sources
underline the reascns in addition to fuel prices why the situation has caused the government
to embark on an extremely expensive publicity campaign ‘'save it.' Combustion of natural
gas is considered, and a flue loss char% is ‘daveloped. This flue loss chart is simole to-
use, showing at a glance the thermal efficiency of plant from simple flue gas information.
British gas is making a large and valuable contribution to natural gas conservation in many
directions such as leakage contxol on mains, technical consultancv service, education of
customers in fuel utilization and with develosments for industrial utilization (self-recu-
perative burner, rapid metal heaters, etc.). In practical terms, items of nlan% can be
utilized more efficiently and care can ke taken in olanning production. The use of new devices

i.e., thermal wheels and heat pipes, provides new tools to help the fuel engineer conserve -
energy.

(ENERGY CONSERVATION, FLUE GAS, SELF-RECUPERATIVE BURNER, METAL HEATERS)

HP78 22014 TEE HEAT PIPE HEAT EXCHANGER: A TECHNIQUE FOR WASTE HEAT RECOVERY ) -

Reay, D.A., (Internat. Res. and Dev. Co. Ltd., Fossway, Newcastle Upon Tyne, England), -
Heat and Vent. EZng. (GB), V 50:7-9, NS94, 2 refs, Jan 14, 1977
Avail:TAC

No abstract available

(PROCESS HEAT, SPACZ HEATING, HEAT EXCHANGER)

HP78 22015 HEAT PIPE APPLIANCES . <

Rice, J.F., (Southern California Gas Company, Los Angeles, CA), Searight, E.F., (Research
Triangle Inst., Research Triangle Park, NC), Ayer, F.A., Symposium on Environment and
Energy Conservation, Aug 1976, EPA-§00/2-76-212

Recent awareness of the extent of energy shortages in this country has increased the
recognicion of the necessity of designing appliances which are capable of providing sig-
nificant raductions in energy consumption. This shculd, howewver, be accomplished without
sacrificing the ecolegical objective of reducing emission of toxic gases or vapors.
The heat pipe appliances discussed accomplish these objectives. Heat pipes have teen
combined with forced combustion and jet impingement heat transfer to produce a group of
gas-fired residential and commercial appliances. These appliances utilize the isothermal
characteristics of heat pipes together with the inherent high efficiency and low emissions -
of forced combustion systems tc provide improved terformance compared £0 cCOntemporary -
equipment. Included in these appliances are a commercial griddle, an oven for reconstitu-
tion of frozen foods, a deep fat fryer, and a water heater, tvoical test data for these . -
appliances show carbon monoxide levels of 10 to 100 PPM and total oxides of nitrogen‘con-"_
centration of 5 to 20 ppm. Cooling efficiency for the oven was imoroved from less than
42% for conventional sguirment o 34%, For the water heatsr, both overating and standby
losses were reduced wizh the combustion 2fficiency increased Zrom 79% to over 3890%, Simifar
improvements were accomplished for the other appliances. These appliances illustrate i
that heat pipes can Se arplied in useful and sractical designs to provide products with .-
significant advantages over conventional appliances. Including improvements in efficiency

papuip

and emissions, while providiag uniformity of temperature and tetter temperature con rol. -

{ENERGY CONSERVATION, TEMPTPATUFRET CONTRZL, TIMPERATURE UTMNIFORMITY) - . -

memereaer mem ameren . me—— —— T T T T

220158 3TUDY OF THE CHARACTIRISTICS OF TCHNVECTIVE ZRAT TRANSFER IN CYLINDRICA - -

SOLAR EMNERGY RESCTIVERS 3Y S0LVING THE CONSUGATE 2ROBLEM QOF HEAT _
ZXCHANGEZ

Rozhov, I.A., Grilikhes, "7.A., Geliotekhnika, p., 36-43, N2, 1977, A77-37771, In Russian

No abstract availabie :

'U

-

(HEAT-PIPE SOLAR COLLECTSRS, SCLAR ZNIRGY CONVERSION, 30UNDARY VALTE 2ROBLEM)
7
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HP78 22017 AEROSPACE AND HVAC&4R SPINOFF 1977 - REAPING THE DIVIDENDS -
HEATING, VENTILATION, AIR CONDITIONING, AND REFRIGERATION

Ruzic, Y.P., (NSI, Washington, DC), ASHRAE Journal, V 19:30-35, Aug 1977, A77-45918
AVAIL:TAC

Industrial applications of U.S. space technology are discussed. Topics include
aerial reconnaissance tiermograms to determine heat losses from buildings, capillary
heat pipes used to insulate oil pipelines or recover neat Srom chimney Zlue losses,
analyses of materials subject to high-temperature stress, analyses of creep fatigues,
computerized design aids for Zfans, heat exchangers and piping systems, aluminized
mylar insulation, solar cellis and collectors, and fuel cells. NASA Industr:ial
Applications Centers, where technical information is made available to the public, are
listed; the availability of patents for licensing is also discussed.

(CAPILLARY HEAT-PIPES, WASTE HEAT RECOVERY)

HP78 22018 TWO-PHASE WORKING FLUIDS FOR THE TEMPERATURE RANGE 100-350°C - IN HEAT
PIPES FOR SOLAR APPLICATIONS

Saaski, E.W., (Sigma Research, Inc., Richland, WA), Tower, L., (NASA, Lewis Research
.Center, Cleveland, OH), American Institute of Aeronautics and Astronautigs_Thermophysics
Conference, 12th, Albuguergue, NM, AIAA paper 77-7533, 8 ?., June 27-29, 1977, MASA
supported research, A77-37266
Avail:TAacC

The decomposition and corrosion of two-phase heat transfer liguids and metal
envelopes have been investigated on the basis of molecular, bond strengths and chemical
thermodynagics. Potentially stable heat transfer fluids for the temperature range .
100 to 350 C have been identiZied, and reflux heat pipe tests initiated with 10 £luids _
and carbon steel and aluminum envelcpes to experimentally establish corrosion behavior
and ncncondensable gas generation rates.

(REFLUX HEAT-PIPE, CARBCN STEEL ALUMINUM, GAS GENERATION)

HP78 22019 SOLAR RESICENTIAL ELECTRIFICATION WITH HIGA PERFORMANCE HEAT ENGINES -
Salter, R.M., (American Institute of Aeronautics and Astronautics, NY), 1975
Avail:TAC

Application of high-performance closed-cycle heat 2ngines to solar energy conver-
sion for rasidences and other buildings is considered. Stirling and recuparated
Brayton cycles are investigated with the former favored due to commonality in construction
with conventional small Otto cycle engines. Typical top temperatures of these cycles are
near best compromise hetween thermodynamic eificiency vs. solar collection efficiency.
The overall system includes an array of sun-Zollowing paraboloidal cocllectors connected
by sodium heat pipes. 3Both heat and electrical buffering, control problems, accoutre-
ments (such as heat pumps), other heat sources, and other alectrical sources are examined.
Analogous conversion of furnace fuel energy into electricity is considered.

(BRAYTON CYCLE, STIRLING ENGINE, PARABOLIC REFLECTORS)

dP73 22020 RECLAIMING DIRTY EXHAUST HEAT )

Schultz, G.V., Fact Manage, V 10:15-17, N2, Feb 1977
Avail:TacC

Shop air contains contaminants. Secme are carcinogenic or toxic. 3ut a NIOSH-
sponsored study shows that 356 out of 514 compounds can be recirculated £or plant energy _
savings. Two distinct solutions have recently appeared. The first continues to exrvell
process-contaminated air from cthe building, wiile adding on some xind of heat transisr
device to warm c¢old makeup air. The second contains warm air within the building (or
cocl air, if it's summer), relying on mechanical or electronic cleaners to safaly - - -
recycle it. The first type includes: heat recovery wheels, exchanges that can recovery
and process up =0 30% of exhaust stream energy and can landle corrosive snvironments
and temperatures %o 1500°7T; static air-to=-air heat exchangers surrounding the sxhaust- -
air duce, using conduction to transfer snergy without cress-contamination and at an
efficiency approaching 80%; neat pipes; recuperators. The second appreoach includes dry -,
centrifugal air cleansers (their limitaticn is particles below 10 u m); wet collectors,
including scrubbers: fabric colleczors ‘gcod Zcr both large and small particulaces);”
electrostatic precipitators, which can treat smoke, dust, fumes, or oil mist, cdpturing
about 99% of airborne parsiculates Irom 1.0l v 2o 100 u m. Several examples of -
applicaticns of these systems are descrized.

(WASTE HEAT RECOVERY, HEAT-PIPE HEAT IXCHANGER?S) - -
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HP78 22021 MODELING OF A HEAT-PIPE OPERATED THERMAL STORAGE CEVICE

‘é:l;g,lg_.’.]’., Lee, C.P., (Univ. of Michigan, Ann Arbor, MI}, ASHRAE Trans., V 82:634- ‘
2 ‘
r N

Avail:TacC

An explicit finite-difference formulation is applied to simulate the dynamic per- ’ ?
formance of fusion-type thermal storage devices operated by heat pipes. The conden-
sation part of the heat pipe is embedded in the storage unit, while the evaporaticn end
is inserted in the solar collector or in the solar loop. Consideration is given to salt
hydrates and eutectic fluoride mixtures of alkali and alkaline earth metals as storage
materials in the vessel of cylindrical or spherical construction. Numerical results are
obtained by means of a digital computer Zor the transient resoonse of tie storage medium
to a step change in the heat-carrier temperature in the heat pipe. The dimensidnless
physxcal Parameters governing the dynamic characteristics of theé heat storage unit are
ldegtified and their roles determined. The formulation is general and may be applied
to investigate cther types of thermal response of the storage systems.

(EUTECTICS, FUSION HEAT, NUMERICAL SOLUTION, THERMAL STORAGE) :

HP78 22022 TUBULAR EVACUATED SCLAR CCLLECTOR UTILIZING A HEAT PIPE AS ABSORBER

Ortabasi, U., (Corning Glass Works Research and Development Laboratories, Corning, NY),
Cooperation Mediterraneenne Pour L'Energie Solaire, Revue Internationale D'Heliotechnique,
p. 14-17, N2, 1976, E(1l1-1)-2608, A77-42961
Avail:TAC

A heat pipe evacuated tubular solar collector has been built and tested. Based on - -
the present design, it performs somewhat less efficiently than a f£flat plate in a vacuum -.
for temperatures less <than 125°F. However, its performance is less dependent on theo -
temperature of operation so that it performs better at temperatures greater than 125°F.
Improvements may be possible given better mirror fabrication, heat pipe design, -
and antireflection coatings.

(CONVECTIVE HEAT TRANSFER, ENERGY CONVERSION) A : -

HP78 22n23 METHANATION: WITH HIGH THEERMODYNAMIC EFFICIENCY ENERGY RECOVERY

Biery, J.C., (Los Alamos Scientific Lab, NM), 28 refs, Jan 1577

Heat pipes could b»e utilized in the process of methanating synthesis gas from
coal in two important ways. The £irst is in the methanator itself where the heat pipes
are used for catalyst cooling, temperature control, and high-temperature isothermal
energy recovery. The second involves recovering thermal energy in the exit gas stream
from the methanator and using it to preheat the methanator inlet stream and also to
produce steam from condensed water from the exit stream. The methanator has the follow-
ing unigue characteristics. It is composed of a dense assembly of heat pipes with stacks
of cylindrical pellets of a catalyst such as NiAl,0, intimately dispersed among them.
Nickel concentration in the catalyst stacks is varied from 10 to 50 cercent to limit the
front end temperature within the methanator. Heat is extracted from the metharation
reacticn isothermally at temperatures approaching the upper operating limits of the
catalyst - aporoximately 750 to 300°X. cEtnergy is transported by the heat pipe into a
steam boiler where superheated steam is produced. The post methanaticn recuperator is
a unique three-chamber recuperator heat exchanger. Energy ls transportsd between the
inlet and outlet gas streams from the methanator in the lower chambers interconnected
with heat pipes. In the upper chamter condensed water from the exit gas stream is
transferred either to the inlet stream or to steam from the condensed water. Costs of
the methanator and the recugerator appear to be somewhat lower than comparable . - .-
units cesigned by $l Paso Natural Gas Co., for their methanation plant at the Four -
Corners arsa. The extraction of the heat iscthermally at high temperature and the
efficient recuperation of the energy between the inlet and outlet gas streams make the -. -
present unit atiractive. -

{METHANATION, COAL GAS3IFICATICN, CATALYST COOLING) H . ‘ i

HP78 22024 DEMAND SENSITIVE EINERGY STORAGE IN MOLTEN SALTS . ﬁ

Nemeck, J.J., Simmons, D.E., Chubb, T.A., (Naval Research Lab., Washington, DC), 2merican
Section of the International Solar Znergy Society, Cave Canaveral, FL, Sharing the Sun: ~
Solar Technology in the Seventies, 7 3, 1976, 3ceer, X.W., ed. T
Heat-of-fusion energy storage and on-demand steam are obtained using heat pipe tech-"-
nigues to transfer heat to and from stacked sal: cans and onto toiler tubes within a ’
sealed "anergy storage-boiler" tank for solar thermal power plants. -

(HEAT-OF-FUSION, EMERGY STCRAGE, EMERGY STORAGE-BOILER, SALTS) i



L NLE.S izt =5

23003
iZ. ©C. AZTRCSPACE AFPLICATIONS

HP78 23000 CONCZPTUAL DESIGN NF A HEAT PIPE RADIATOR

Bennett, G.A., (Los Alamos Scientific Lab., ¥M), Sept 1977, LA--§939-MS

A conceptual design of a waste heat radiator has been developed for a thermoelectric
space nuclear power system. The basic shape of the heat pire radiator was a frustum of
a right circular cone. The design included stringer heat pipes Lo carry reject heat from
the thermoelectric modules to the radiator skin that was composed of small-diameter, thin-
wallad cross heat pipes. The stringer heat vipes were armored to resist ouncture by a
meteoroid. The cross heat tipes w~ere designed to provide %the necessary unpunctured
radiating area at the missicn 2nd with a2 minimum initial system nass. Several design cases
were developed in which the individual stringer survival probabilities were varied and
t@e radiator svystem mass was calculated. Results are prasented for system mass as a func-
tion of individual stringer survival probability for six candidate container materials,
three candidate heat pipe fluids, two radiator operatiné temperatures, two meteoroid shield
types, and two radiating surface cases. Results are also presented for radiator reject
heat as a function of system mass, area, and length for three system sizes. :

(THERMOELECTRIC, NUCLEAR~SPACE POWER, CONCEPTUAL DESIGN)

#278 23001 DEVELOPMENT AND QUALIFICATION OF PCM THERMAL CAPACITORS, PART 2. DEVELOPMENT
OF PCM THERMAL CAPACITOR PLATFORMS AND PCM THERMAL CAPACITOR RADIATORS -
SATELLITE TEMPERATURE CONTROL. Final Report

Blaser, P., Hauser, G., Strittmatter, R., (Bonn 3Bundesmin., Fuer Forsch. U Technol.,
Czrmany) , (Dornier-System G.M.B.H., Friedrichshafen, West Germany), 129 p.,
BMFT-FB-W=76-27~-VOL~2, BMFT-WRT-2073/0130423, N77-26437, In German:; English summary -
Results of a development program which deals with theoretical and experimental
investigations of phase change thermal capacitcrs for space application are described.
Different types of thermal design with latent enthalpies between 120 and 380 W-H and
an operational temperature of about 26°C wers examined. The following frequent heat _ -
power profiles wers considered: variable power, eclipse, and variable pcwer combined. .
with radiation. Besides filler structures previously qualified, a new thermal transport
structure using heat pipes was investigated.

(PHASE TRANSFORMATION, TEMPERATURE CONTROL, THERMAL CAPACITORS)

HP78 23002 INSTRUMENT CANISTER THERMAL CONTROL ~ FOR SPACE SHUTTLE-BORNE EXPERIMENTS

Harwell, W., Haslett, R., (Grumman Aerospace Corp., Bethpage, NY), Ollendorf, S., (NASA,
_Goddard Space Flight Csnter, Greenbelt, MD), American Institute of Aercnautics and .
Astronautics, Thermophvsics Conference, 12th, Albuquergue, NM, AIAA paper 77-761, 10 p.,
June 27-29, 1977, A77-37272
Avail:TAC B

A transiant thermal analysis and test of a thermal control canister is described.
The 1 x 1 x 3 M canister provides a uniform thermal envirorment for shuttle instrument
payloads regquiring fine temperature control, the design gcal being operation between
0°C and 20°¢ with a range of plus or minus 1°C at any selected set-point temperature.
The canistaer side walls are isothermalized by a system of longitudinal and circum-
ferential heat pipes rejecting heat through feedback controlled, variable conductance
heat pipes to side mounted radiators. A breadboard medel of two side walls and two
radiators was tesced in a thermal vacuum chamber. The breadboard was stable over a
wide range of effective environments, experiment dissipations, and control point
temperature levels. 4 -

(BREAD BOARD MODEL, MATHEMATICAL MODEL, DESIGN ANALYSIS)

P78 23003 STUDY ON THE FEASIBILITY OF STRUCTUPAL THERMAL CANISTER FOR THE INSTRUMENT -
POINTING SUB~-SYSTEM OF THE SPACELAB, VOLUME 2. Final Report - R

Hoppe, U., Kreeb, H., Nickel, H., Heidt, F.D., Staatsmann, H., Xoch, H., Perdu, M-, -,

(Dornier-System G.M.3.3., Triedrichshafen, West Germany), ESP-CR(P}-922-VOL-2, - -
TSA-28l7/76/P/WMT(SC), N77-26220 o .o

avail:TAC >

A caniscter was studied for =zhe precision pointing facility IPS (used for spacelab -~
experiments). This canistar 1as =3 crovide a mounhting and thermally controclled T
snvirocnment Sor a set of individuallv not controlled sxreriments. A cost evaluaticn --

is given “or the total canister as well as Icr tnhe thermal and structural subsystems,
based on the heat pipe radiator solution selec:ed. -

(HZAT-PIPE PADIATOR, INSTAUMENT ORIINTATION, STRUCTURAL ANALYSIS) -

10 ' )
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HP78 23004 FUSIBLE HEAT SINKX TCR A CRYCGENIC REFRIGZRATOR

gggeg#qizﬁ.L., (Department of this Air Force, Washington, DC), Jan 12, 1977, AD-D--00351S,
A fusible heat sink for a cryogenic refrigerator used to provide cooling for a detec-
tor in t@e guidance system of a missile is described. The crycgenic refrigefator has a
col@ cylinder in contact with the detector and a hot cvlinder. The hot cvlinder and cold
cylinder are connected %o a crankcase nousing. 3 heat ripe is connected betwaeen the crank-
case and the missile skin for providing prirary conling Zor the crankcase housina. mhe
fusible heat sink is connected to the crankcase with the crankcase forming part of the wall
of the heat sink housing. A fusikl2 material is located within the housing. The inside
surface of the heat sink housing is coated with nickel and silver to increase the heat trans- !
fer between the crankcase and the heat sink. :

(MISSILE GUIDANCE, COCQLING, COATING, NICXEL, SILVE?R)
-
EP78 230CS5 A PRECISE SATELLITE THERMAL CONTROL SYSTEM USING CASCADED HEAT PIPES

Steele, W.H., gchonnell Douglas Astronautics Co., St. Louis, MO0), McXee, H.B., (Frito-
Lay, Inc., Irving, TX), american Institute of Aercnautics and Astronautics. Thermophysics

Conference, 12th, Albuquergue, NM, AIAA paper 77-777, 12 p., June 27-29, 1977, A77-37282
Avail:TAC L ;

A cascaded, dry reservoir, variable conductance heat pipe system was tested.
Results show passive temperature control within plus or minus 0.5°F of the desired
set point for a wide range of heat input and effective space environment temperatures.
The use of long capillary tubes to isolate the reservoir and prevent set point temper-
ature change due to cyclic heat loads and/or cycl_c environment temrerature was
demonstrated. Orbit set point temperature control feasibility was investigated using
variable volume.control gas reserveoirs. Set point temperature adjustment over a range
frem 50°F to 90 F was successfully achieved with high control accuracy.

-

(CASCADE FLOW, WORKING FLUIDS, CYCLIC LOADS) < -

HP78 2,006 NEW AVIONICS THERMAL CONTROL CONCEPT

Token, K.H., (McDonnell Aircraft Co, St Louis, MO), ASME Pap, 10 p., N77-ENAs~-14 for
Meet, S refs, July li-l4, 1977
Avail:TaC

This paper describes a heat pipe-liquid cooling concept for avionic system
cooling which exnibits higher thermal efficiercy than currently used cooling technigues.
The new heat pipe cooling concept allows higher temperature coclants to maintain avionic
components at lower operating temperature, thereby increasing avionic reliability and
reducing aircraft weight penalties incurred by the cooling sytem. ZXey technical develop-
ments regquired for the implementation of the new cooling techanigue ars identified.
Measured thermal performance for small heat pipes which were developed for the new cool-
ing system are presentad.

(SLECTRONIC EQUIPMENT, WEIGHT REDUCTION)

EP78 23007 THE MULTISTAGE YEAT PIPE PADIATOR - AN ADVANCEMENT IN PASSIVE COOLING

TECHNOLOGY
Wilson, D.E., Wright, J.P., (Rockwell Tnternaticnal Corp., Downey, CA), American .
Institute of Aeronautics and Astronautics, Thermoppysics Conference, 12th, Albuquerque, - -
NM, AIAA paper 77-7460, 13 2., June 27-29, 1977, NAS8-31324, N77-37271 -
Avail:TacC

Mathematical models were developed for one-, two-, and three-stage radiator systems -._ -
to determine optimum stage areas and system performance as a function of such parameter -
as insulation affectiveness, cold stage -emperature, and heat load to the cold and
intermediate stages. This study shows that xmultistage radiator systems can be optimized
on the basis of weight or projected area, and that cold stage temperature as low as
139% are theoretically possible with present technology levels for insulation smittagce. .
For the baseline cesign, analyses were perZormed to determine optimum radiator £in _ -
geometry and nhear pipe spacing as a Zunction of temperature, material properties, and - - -
heat pipe weignt. In acddition, a ground test system was designed for the baseline- design -
with heat rejection reguiraments of 10 MW at 35°% on the cold stage and 100 MW at the - 3
second stage. B

{MATHEMATICAL MODEL, OPTIMIZATICN, GRCUND-TEST SYSTEM) -

11
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HP?78 22008 LOW-TEMEPRATURE HEAT PIPES FOR AIRCRAFT - RUSSIAN BQOK

Voronin, V.G., Reviakin, A.V., Sasin, V.I., Tarasov, V.S., Moscow, Izdatel'Stvo
Mashinostroenie, 200 p., 1376, A77-43612, In Russian

The theoretical basis of heat and mass transfer processes in low-temperature heat
pipes operating at temperatures Irom minus 200 to plus 300°¢ is presented. Methods
used to predict the parameters of heat pipes with diZferent configurations and diffasrent
conditions of operation are cutlined. The construction and control of heat pipes are
discussed, and present and possible Zutwre applications of heat pipes in aircraft and
spacecraft in heat regulation, air conditioning, and life support systems are considered.

(LIFE SUPPORT SYSTEMS, TEMPERATURE CONTROL)

HP78 23009 RE-ENTRANT GROOVE HEAT PIPE - COMPUTERIZED DESIGN FOR OAO APPLICATIONS
Harwell, W., Kaufman, W.B., Tower, L.X., (Grumman Aerospace Corp., 3Sethpage, NY)},
(NASA, Lewis Research Center, Cleveland, OH), American Institut of Aeronautics and
Astronautics, Thermophysics Conference, 12th, Albugquerque, NM, AIAA paper 77-773,
9 p., June 27-29, 1977, A77-37280
Avail:TAC :

This paper describes theoretical and exverimentally verified heat pipe charactez-
istics of an axially grooved aluminum extzusion with a re-entrant groove profile.
The extrusion is 13 MM diameter with 20 axial grooves, each groove consisting of a
nominal .8 MM diameter channel with a .2 MM wide passageway connecting the channel to
the hollow core. A computer program was wWritten to compute the zero gravity heat .
transport cacability of the extrusion. A heat pipe was fabricated and its pegformance—.
characteristics measured. The characteristics of the pipe with ammonia at 20 °C are
Zero gravity pumping limit 140 W~-METERS; static wicking height 21.5 MM; evaporator and

condenser coefficients 7200 and 20,500 WATT/SQ M C, respectively. . -
{2ERC GRAVITY, HEAT TRANSPORT CAPABILITY, ZERD GRAVITY)

II. B. ELECTRICAL AND ELECTRONIC APPLICATIONS

HP78 24000 THERMAL CONTROL OF POWER SUPPLIES WITH ELECTRONIC PACXAGING TECHNIQUES
Final Report

(Marein Marietta Corp., Denver, CO), Feb 1977, N77-18386 .
The integration of low-cost commercial heat pipes in the design of a NASA candidate

standard modular power supply with a 350 W output resulted in a 44% weight reduction.

Part temperatures were also appreciably reduced, increasing the environmental capability

of the unit. A complete 350 W modular power converter was built and tested to evaluate
thermal performance of the redesigned supply.

(MODULAR PCWER SUPPLY, WEIGHT REDUCTION, TEST, EVALUATION)
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ITI.  HEAT PIPE THEORY

III. A. GENERAL

HP78 30000 STUDY OF HEAT AND MASS TRANSFER IN A HEAT PIPE BY MEANS OF A MATHEMATICAL
MODELING METHOD

Avakian, I.N., Xulagin, I.I., Sheludko, 0.V., (Severo-Zapadnyi Politekhnicheskii
Institut, Leningrad, USSR), In Heat and Mass Transfer -~ V; All-Union Conference on Heat
and Mass Transfer, 5th, Minsk, Belorussian SSR, May 17-20, 1976, Proceedings, Minsk,
An BSSR Institut Teplo~- I Massoobmena, V 3:211-215, Pt 2, 1976, (A77-43880 20-34),
A77~43947, In Russian - B i

A block diagram is presented for a mathematical model of the operation of a coaxial
heat pipe, used for removal of heat Zrom a cylindrical body The optimal regime for
xnltvatlnq the pipe conditions is cetermlned as the regime of its heating during which
the pipe goes into a stationary state after a minimal time 'without overburn'
Functions are introduced for ascertaining this regime, and a method for determzulng the
temperature, moisture content, and pressure of the wick is described. Heat and mass
transfer for a scdium heat pipe is analyzed.

(COAXIAL HEAT-PIPE, SODIUM, HEAT TRANSFER)

HP78 30001 PREDICTION OF CRYOGENIC HEAT PIPE PERFORMANCE - Final Report

Colwell, G.T., (Georgia Inst. of Tech., Atlanta, GA, School of Mechanical Engineering),
NASA-CR-152770, 109 p., NSG-2054, N77-76447
Avail:TAC

No abstract available

(PREDICTION ANALYSIS, THERMAL PERFORMANCE)

HP78 30002 RE-ENTRANT GROOVE HEAT PIPE - COMPUTERIZED DESIGN FOR CAO APPLICATIONS -

Harwell, W., Xaufman, W.B., Tower, L.X., (Grumman Aerospace Corp., Bethpage, NY),
(NASA, Lewis Research Center, Cleveland, OH), American Institut of Aeronautics and
Astronautics, Thermophysics Conference, 12th, Albugquerque, NM, AIAA paper 77-773,
9 p., June 27-29, 1977, A77-37280
Avail:TAC

This paper describes theoretical and experimentally verified heat pipe character-
istics of an ax.ally grooved aluminum extrusion with a re-entrant groove profile.
The extrusion is 13 M diameter with 20 axial grooves, sach groove consisting of a
nominal .8 MM diameter channel with a .2 MM wide passageway connecting the channel to
the hollow core. A computer program was written to compute the zero gravity heat
transport capability of the extrusion. A heat pipe was fabricated and its :esformance
characteristics measured. The characteristics of the pipe with ammonia at 20°C are
zZero gravity pumping limit 140 W-METERS:; static wicking heignt 21.5 MM; evaporator and
condenser coefficients 7200 and 20,500 WATT/SQ M C, respectively.

(ZERO GRAVITY, HEAT TRANSPORT CAPABILITY, ZERO GRAVITY)

EP78 30003  HEAT PIPE: THEORY AND P2ERFORMANCE CHARACTERISTICS

Jog, V., Mujumdar, A.S., (McGill Univ., Montreal, Canada), J. Inst. Eng. (India), -
Chem. Eng. Div., V 57:78-82, N2, Feb 1977
Avail:TAC
Efficient and economic transfer of thermal energy from one location to another

has always been a major problem facing engineers. A lightweight device with no moving
parts, high efficiency and long-life expectancy - called heat pipe ~ seems to be ideal
for several such apolicaticns. It consists essentially of a hollow tube with a working
fluid in a porous liner winich covers zhe inside surZace of the tube. The basic . -
physical and operational features of the device and some areas of its application and
inherent limitations are discussed.

- -

(OVERVIEW, HEAT-PIPE THEORY) -
HP78 30004 EFFSCTS OF GRAVITY ON GAS~-LOADED VARIABLE CCNDUCTANCE HEAT PIPES -
Xelleher, M.D., 3atts, Ww.H., (Nav. Postgrad. Sch., Monterey, CA), Int. Heat Pipe Conf.,
Pap., 2nd, p. 253-234, 197% ° -

avail:TAC
No abstract available

(HEAT TRANSFER, MASS TPANSFER, DESIGN)
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HP78 30005 THERMAL PIPES OF COMPLEX CONTIGURATION

Vagsil'Ev, L.L., Ronovalov, A.S., (Inst. of Heat and Ma-s Exchange, Minsk, USSR},
Vestsi Akad. Navuk BSSR, Ser. Fix. - Energ. ¥avuk, V 3:110-114, 1976, In Russian

An approximate method for calculating a maximum power transferred by the complex-
configuration heat pipe is proposed.

|
: l
(POWER-TRANSFER, MATHEMATICAL APPROXIMATION) \
HP78 30006 LOW-TEMEPRATURE HEAT PIPES FOR AIRCRAFT - RUSSIAN BQOK \
Voronin, V.G., Reviakin, A.V., Sasin, V.I., Tarasov, V.S., Moscow, Izdatel'Stvo
Mashinostrcenie, 200 p., 1976, A77-43612, 'In Russian

The theoretical basis of heat and mass transfer processes in low-temperature heat
pipes operating at temperatures from minus 200 to plus 300°C is presented. Methods
used to predict the parameters of heat pipes with diffexent configurations and different
conditions of operation are coutlined. The construction and control of heat pipes are
discussed, and present and possible future applications of heat pipes in aircraft and
spacecraft in heat regulation, air conditioning, and life support systems are considered.

(LIFE SUPPORT SYSTEMS, TEMPERATURE CONTROL)

HP78 30007 THEORETICAL CONSIDERATIONS ON THE HEAT PIPE

Zimmermann, P.,
Avail:NTIS

The physical principles of the heat pipe ars presented with the surface stress con-
sidered. The possibility of formation of steam bubbles is studies. For networks and grooves,
relations are established giving the cross-section of the fluid as a function of the hy-

draulic capillary diameter. For networks and grooves the maximum possible suction stresses
are determined. o )

(Stuttgart University, Germany), Inst Fuer Xernenergetik, Oct, 1976

-

(STEAM BUBBLE FORMATION, SUCTION STRESS, HYDRAULIC CAPILLARY DIAMETER} : ’ .

HP78 30008 IXKEPTPE - A PROGRAMME FOR THE CALCULATION OF HEAT PIPES

Hage, M., (3tuttgart University, Germany), Inst Fuer Kernenergetik, July 1976, In German
Avail :NTIS . . -

The computing program IXEPIPE at hand calculates the maximum capacity to be'tzavs-erred
by a heat pipe in dependence of working temperature and tilt heiqht or aggle cf_xncl;zi-
tion. These calculacions can be carried out for various types of heat pipes using different
heat carriers. The first version of the programme at hand only calculates the transfer
capacity for saturated capillary structures.

(COMPUTER PROGRAM, SATURATED CAPILLARY STRUCTUCRES, FLUID FLOW)

HP78 30009 THE MULTISTAGE HEAT PIPE RADIATOR -~ AN ADVANCEMENT IN PASSIVE COOLING
TECHNOLOGY

Wilson, D.E., Wright, J.P., {Rockwell Internatiocnal Corp., Downey, CA), American
Institute of Aeronautics and Astronautics, Thermophysics Conference, 1l2th, Albuguergue,
NM, AIAA paper 77-760, 13 p., June 27-29, 1977, NAS8-31324, N77-37271

-

Mathematical mcdels were developed for one-, two-, and three-stage radiator systems
to determine optimum stage areas and system performance as a function of such parameters -
as insulation s=ffectiveness, cold stage temperature, and heat locad to the cold and’ -
intermediate stages. This study shows that aultistage radiator svstems can be optimized
on the basis of weight or projeczad area, and that c¢old stage temperaturs as low as .
159X are theoretically possible with present technology levels for insulation emittancs,
For the baseline design, analyses were performed to determine optimum radiator fin
geometry and heat pife spacing as a Zunction of ‘temrerature, material properties, and .
heat pipe weight. In addizion, a ground test sgstem was designed for the baseline desiqn .
with heat rejection requirements of 10 MW at 357X on the cold stage and 100 MW at the - -
second stage. i

Avail:TAC f'

(MATHEMATICAL MODEL, OPTIMIZATION, GROUND-TEST SYSTEM)
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III. B. HEAT TRANSFER

HP78 31000 STATIC AND DYNAMIC CHARACTERISTICS OF GAS~-FILLED HEAT PIPES DURING
COMPLEX THERMAL EFFECTS

Beliakov, A.P., Platunov, E.S., (Leningradskii Institut Tochnoi Mekhaniki I Optiki,
Leningrad, USSR), In Heat and Mass Transfer - V; All-Union Conference on Heat and
Mass Transfer, 5th, Minsk, Belorussian SSR, May 17-20, 1976, Proceedings, Minsk, An
BSSR Institut Teplo~ I Massoobmena, V 3:223-227, Pt 3, 1976, (A77-43880 20-34).
A77-43949, In Russian

Gas~filled heat pipes used as requlators perform the three €functions of removing
heat from an object, creating an internal isothermal zcne, and maintaining temperature
stability. Transfer functions are introduced Zor estimating output time of the heat
pipe system and for obtaining allowable amplitude and frequency values of fluctuations
of destabilizing effects. A mathematical analysis of a gas-filled heat pipe model is
provided for static and dynamic conditions. A

(DYNAMICS, THERMAL STABILITY, ERROR ANALYSIS, LAPLACE TRANSFORM)

HP78 31001 INVESTIGATION OF THEE MAXIMUM HEAT-TRANSFER CAPACITY OF CLCSED TWO-PHASED
THERMOSIPHONS

Bezrodnyi, M.K., Beloivan, A.I., (Kiev Polytech Inst. Ukx, USSR), J. Eng. Phys.,
V 30:377-383, N4, 9 refs, Apr 1976
Avail:TAC

The re3ults of an investigation of the maximum heat <luxes transmittad by vertical
two-phase thermosighons as a functicon of their geometrical, vhysical, and regime
parametars are presented. In this study an 2ffort was made to determine how the heat-
transfer capacity of the thermosiphon was affected by the following parameters: the
diameter and length of the heat-input segment, the pressure of the intermediate coolant
and the degree to which the inner cavity of the thermosiphon was £illed with it, the
nature orf the working liguid, and the dimensions of the condenser.

'DESIGN PARAMETEFRS, TLUID FLOW, HEAT TRANSFER)

P78 31002 CONTROL OF HEAT PIPES AND THERMOSIPHONS

Chisholm, D., (Nat. Engng. Lab., East Kilbride, Scotland), Heat Pipe Forum, p. 30-37,

8 rgfs, 1976, Glasgow, Scotland, Nat. Engng Lab., March 18, 1975, Glasgow, Scotland
Avail:TAC -

No abstract available

(THERMAL VARIABLES, HEAT TRANSFER, GAS CONTROL, CIRCULATION CONTROL)

HP78 31003 HEAT EXCHANGE AND FRICTION IN A SUBSONIC VAPOR FLUX OF HIGH-TEMPERATURE
HEAT PIPES

‘.-"edo:;ov,l VéN.. Sasin, V.Y., (Moscow Power Inst., USSR), J. Eng Phys, V 30:258-263, N3,
Mar 3, 157

Aavaii:TAC

'The influence of forced vapor convection on heat t<ransport in heat pipes is
axamined on the basis of the soluticn of the energy and motion equaticns. It is shown .

;nat ra@igl heat flux due to molecular heat conduction of the vapor in the evaporator
is negligible.

-

(FORCED CONVECTICN, HEAT-TRANSFER, RADIAL HEAT-FLUX)

HpP78 31004 AN EZXPERIMENTAL AND THEOQRETICAL STUDY OF THE OPERATION OF A HEAT PIPE

Zoriachke, I.G., Zzhizhin, G.V., In HZeat and Mass Transfer - V; All-Union Conference .
on Heat and Mass Transfer, 5th Minsk, Belorussian S$SSR, “May 17-20, 1376, Proceedings, -
Minsk, An 3SSR Institut Teplo- I Massoobmena, V 3:228-231, P& 2, 1976, (A77-43830 20-34),
A77-43959, Ia Russian

The temperature distribution and heat lux of a sodium heat pipe in sucersonic
£low conditicns were determined and compared with the predicted results cbtained by
the unidimensicnal steady-state zheory Sor a delivery nozzls with a dry vasor in it.
Since a discrepancy was found, an imprcoved mathematical procedure is presented, which
takes into account the possibility of 2 swo-thase structure of “he flux.

'SODIUM, SUPEPSONIC HEAT TRANSFER, MATHEMATICAL MODELS)

15

R s et W S, w1




31008/32901
HP78 31005 AN ANALYTICAL STUDY OF THE MAXIMAL HEAT-CARRYING CAPACITY OF HEAT PIPES

Semena, M.G., Gershuni, A.N., Rassamakin, 3.M., (Xievskii Politekhnicheskii Institut,
Kiev, Ukrainian, USSR}, Enercetika, V 20:93-97, May 1377, A77-422680, In Russian

An analytical solution is obtained for determining the hydrodynamic limit of the
heat-carrying capacity of a cylindrical heat pipe with an annular isotropic wick.
The differential equaticn of fluid movement in the wick of the heat tube is solved
by the separation of variables method using an orthogonalized basis. Experiments
were conducted using water heat pipes with metal fiber wicks. The theoretical calcu-~
lations were in basic agreement with the experimental results.

(COMPUTER MODELING, ISOTROPIC MEDIA, THERMAL CONDUCTIVITY)

HP78 31006 TEMPERATURE AND PRESSURE CHANGES IN THE VAPOR DUCT OF A HIGH-TEMPERATURE
HEAT PIPE

‘.
Tolubinskiy, V.I., Shevchuk, E.N., Chistop'Yanova, N.V., (Engng. Thermophys. Inst.
Acad. of Sci., Ukrainian, USSR), Heat Transfer -~ Sov. Res. (USA), Vv 7:111-115, NS,
2 refs, Sept - Qct 1575 .
Avail:TAC

No abstract available

{TWO-PHASE FLOW, EVAPORATOR, CONDENSER)

HP78 31007 CENTRIFUGAL COAXIAL HEAT PIPES

Vasiliev, L.L., Khrolenok, V.V., (Luikov Heat & Mass Transfer Inst, Minsk, USSR), i

Int Heat Pipe Conf, 2ad, Bologna, Italy, Mar 31-'pr 2, 1976, Publ by Eur Space Agency
(ESA SP112), Noordwijk, Netherlands, V 1:243-302, 5 refs, 1976

This paper discusses the design efficiency, heat transfer theory, working
fluids, dynamics, materials, and thermal parameters of centrifugal coaxial heat pipes.

(CESIGN, HEAT TRANSFER, WORKING FLUIDS, MATERIALS)

¥p73 31008 COMPUTATION OF THERMAL RESISTANCE OF LOW-TEMPERATURE HEAT TUBES

Yudashkin, A.G., Aronchik, G.I., Lempert, E.Y., (Kuibyshev Polytech Inst, USSR),
J. Eng. Phys., V 30:6%90-692, N6, 2 refs, June 1376
Avail:TAC )
A calculation is made of the thermal resistance in low-temperature tubes with
the effect of the interrelation between the evaporator and the condenser on the thermal
resistance takan into account.

(MATHEMATICAL MODEL, THERMAL CONDUCTIVITY) : !

III. C. FLUID FLOW

HP78 32000 METHOD OF CALCULATION AND INVESTIGATION OF HIGH-TEMPERATURE HEAT PIPE
CHARACTERISTICS TARXING INTO ACCOUNT THE VAPOUR FLOW COMPRESSIBILITY,
FRICTION AND VELOCITY PROFILZ

Brovalsky, Y.A., 3vystrov, P.I., Melaikov, M.V., ZAcad of Sci of USSR, Moscow, USSR),
Int Beat Pipe conference, 2nd, 3ologna, I*aly, Mar 3l-apr 2, 1976, Publ by Eur Space

Agency (ESA SP112), Noordwiik, Netherlands, V 1:113-122, 12 refs, 1976 - -
Avail:TAC

This paper shows that channel cross-sectisn equations of motion can be used to
calculate =he charactaristics of the vapor phase in 2 heat pipe. The nydgocynamiqs of -
vapor flow, heat pipe design relations, calcilatcicns of sonic regimes, and compaxison
of =heocretical and axperimental data are discussed. -

(FLUID FLOW, LIQUID METALS, VAPOR PHASE) : 7

P78 32001 ©XCESS LIQUID IN YEAT-PIPE VAPOR SPACES

-37261

16 : .

tninger, J.Z., Sdwards, D.X., (TRW Defense and Space Systems Group, Redondo 3each, .
CA), American Instituce of Aeronautics and Astoonautics, Thermophysics Conlerence, -
1244, Albucguergue, ¥M, AIAA paper 77-743, 7 9., June 27-29, 1977, NAS2-3310,

77 )

a




32003

A mathematical model is develoved of axcess liguid in neat gipes that is used to
calculate the parameters governing <he axial flow of liguid in fillets and puddles
that form in vapor spaces. In an acceleration field, the hydrostatic pressure vari-
ation is taken intc account, which results in noncircular meniscus shapes. The two
specific vapor~space ceometries considered are circular and the 'dee-share' that is
formed by a slab wick in a circular tube. Alsc presented are theoretical and experi-
mental results for the conditions under which liguid slugs form at the ends of the
vapor spaces. These results also apply to the priming of arteries.

(MATHEMATICAL MODEL, ARTERY PRIMING, AXIAL FLOW)

HP78 32002 CONTROLLABILITY ANALYSIS FOR PASSIVELY AND ACTIVELY CONTROLLED HEAT PIPES

Lehtinen, A.M., (Rockwell International Corp., Downey, CA), American Institute of
Aerconautics and Astronautics, Thermophysics Conference, l12th, Albuquerque, NM, AIAA
paper 77-776, 13 p., June 27-29, 1977, A77-37281 -
Avail:TAC

An analytical technique was developed for steady state and pseudo-transient
control analysis of variable conductance heat pipes (VCHP) and feedback controlled heat
pipes (FCHP). The approach uses a modified vapor temperature profile and a simole
5-node thermal network. This approach differs from past technigques in that it accounts
for gas blockage of the adiabatic section ané the set point temperature is referenced to
the controcl point node rather than the vapor node. In FCHP systems, the gas inventory
is determined at a design set point temperature and neld constant £or analysis of
varying contzoller set point temperatures. The pseudo-transient analysis integrates
the reservoir response time equations witi the steady state control equations. The
most significant findings were that reservoir volume increases due to controller set
goint, response time, andmservoir temperature limitations; and the existence of
minimum and maximum contrcller set goint temperatiures when reservoir temperature limi-
tations exist.

'TEEZ-3ACY CONTRCL, GAS FLOW, FCHP, VCHP)

HP78 32003 HEAT EXCHANGE AND FRICTION IN A SUBSONIC VAPOR FLUX OF HIGH-TEMPERATURE
HEAT PIZES

Feadorov, V.N., Sasin, V.Y., (Moscow Power Inst., USSR), J. Eng Phys, V 30:258-263, N3,
Mar 3, 1976

Avail:TAC
The influence of forced vaper convection on heat transport in heat pipes is
examined on the basis of the solution of the energy and motion equations. t is shown

that radial heat £lux due to molecular heat conduction of the vapor in the. evaporator
is negligible.

(FORCED CONVECTICN, HEAT-TRANSFER, RADIAL HEAT-FLUX)
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IV.  DESIGN, DEVELOPMENT, AND FABRICATICN
IV. A. GENERAL

HP78 40000 MODULAR HEAT PIPE RADIATOR

Alario, J., Canaras, T., (Grumman Aerosp Corp, Bethpage, NY), ASME Pap, 1l p.,
N77-ENAs-39 for Meet, July 1ll-14, 1977
Avail:TAC

This paper descripes the desiqn, fabrication, and test results for a space
radiator panel of modular construction tqat uses ammonia heat pipes to achieve heat
rejection rates up to 420 W/M° (39 W/FT“), and also incorporates a low freezing
point (propane) heat pipe to promote thawing of a frozen panel. Parametric analyses
" and design details are presented in addition to thermal vacuum test data in the form
of steady-state performance maps (net panel heat .ejectlon versus inlet temperature)
and freeze/thaw transients.

(LIFE-SUPPORT, AMMONIA, PROPANE)

HP78 40001 GOVERNMENT FUNDING FOR HEAT PIPE RESEARCH PROMISES BENEFIT FOR :
DIZCASTERS ..

Die Cast. and Met. Moulding (GB), V 8:7~8, N1, 2 refs, Jan - Feb 1377
Avail:TAC
No abstract available

(EVAPORATOR DEVELOPMENT, SERVICE LIFE)

HP78 40002 IXEPIPE - A PROGRAMME FOR THE CALCULATION OF HEA” PIPES

‘Hage, M., (Stuttgart University, Gernany), Inst Fuer Kernenergetlk July 1976, In German
Avail:NTIS

The ccmput;ng program IXEPIPE at hand calculates the maximum capacity to be *ransLerred
by a heat pipe in dependence of working temperature and =ilt height or angle of inclina=-
tion. These calculations can be carried out for various “ypes of heat pipes using different
heat carriers. The first version of the orogramme at hand only calculates the transfer
capacity for saturated capillary structures.

(CCMPUTER PROGRAM, SATURATED CAPILLARY STRUCTURES, FLUID FLOW)

HP78 40003 MANUAL FOR HEAT PIPE DESIGN - f

Hermann, E., Xoch, H., Xreeb, #H., Perdu, M., (Dornier Syst. Friedrichshafen, Germany),
Bundesminist Forsch Technol Torschungsber Weltraumforsch W., 231 p., 22 refs, Dec 17,
1976, In German with English abstract

This handbook, which consists of materials data, a compilation of the computation
procedures, and gerformance documents showing the effects of various parameters, has
teen put together as a loose-leaf collection. The materials data contains the most
important tenpevahure-depencenu and temperature-indepencent materials parameters oI
ordinary neat-transier media, some wall-material data and a compatibility matrix. The
;erformance documents give the maximum values for different parameters and operating
conditions. . .

(MATERIALS, COMPUTATION, PERFORMANCE, PARAMETERS)

HP78 40004 4EAT DPIPE DEVICES FOR THERMOMETRIC PURPOSES BETWEEN 600°C AND 1100°C -

Lanza, F., Ricoi?i, 7., 3assani, C., Geiger, ?., (Inst di Metrol 'G Colonnertti, . -
Torinc, Italy), Z. Phys E. (Sci Iastrum), 7 939:876-373, N10, 53 refs, Oct 1376 )
Avail:Ta i

2

A Zurnace has been develcped dr ch embodxgs a heat pipe device which is operative -
in the temperature interwval from 530 °¢ =0 119072. The JESLgn cdata of the heat pipe -
and the results of different <ests on its effecti-reress in sroviding large isothermal
regions are regor=ad. Major thermoretr:ic applicaticns stemming from the test results
are suggested. -

{HEAT-PIPE FURNACE, DESIGM, ISCTHEPMAL)




Iv. 8. WICXS

HP78 41000 BOILING LIMITED HEAT PIPES IN A MID-TEMPERATURE RANGE - 150 TO 300°C

Brown, A., (Univ. of wWales, Cardiff, Wales), ASME Pap, 7 p., N77-HT-39 for Meet.,
12 rafs, Aug 15-17, 1977
Avail:TAC

This paper describes measurements made of evaporator performance for heat pipes
with wicks made from 2 layers of fine wire mesh, one being 100 mesh and the other 400
mesh formed into a polygon section spotwelded to the pipe at the apices of the polygon.
Both Thermex and water are bused as working fluid.

(WICK PERFORMANCE, THERMEX, WATER)

HP78 41001 A STRUCTURED SURFACE FOR HIGH PERFORMANCE EVAPORATIVE HEAT TRANSFER

Saaski, E.W., Hamasaki, R.H., (Sigma Research, Inc., Richland, WA), American Institute
of Aeronautics and Astronautics, Thermophysics Conference, 12th, Albuguergue, NM,

AIAA paper 77-778, 9 p., June 27-29,.1977, NASA-supported research, A77-37283
Avail:TAC : .

An evaporative surface is described for heat pipes and other two-phase heat
transfer applications that consists of a hybrid composition of v-grooves and capillary
wicking. Characteristics of the surface include both a high heat transfer coefficient
and high heat flux capability relative to conventional open faced screw thread sur-
faces. With a groove density of 12.6/CM and ammonia working £luid, heat transfer
coefficients in the range of 1 to 2 W/SQ CM K have been measured, along with maximum
heat flux densities in excess of 20 W/SQ CM. A peak heat transfer coefficient in
excess of 2.3 W/SQ CM K at 20 W/SQ CM was measurad with a 37.8/CM hybrid surface.

(EVAPORATIVE SURFACE, FILM BOILING, TWO-PHASE FLOW)

HP78 41002 TOPICS IN NITRATION

Yoshida, T., Fujiwara, X., Ando, T., (Fac. Eng., Univ., Tokyo, Japan), Senryo To
Yakuhin, p. 271-281; 1976, In Japanese

No abstract available

"wICX DESIGN, COMPUTZR PROGRAM)

1278 41003 STUDIES ON CAPTLLARY STRUCTURES WITH REGARD TO THEIR USE IN CRYOGENIC
HEAT PIPES

Molt, W., (Stuttgart Univ, TH, Germany, F.R., Inst. Fuer Kernenergetik), July 1976,

In German

In cryogenic heat pipes, special attention must be paid to the capillary

ture, since the capacity of these pipes is already limited by the properties of
iguid alone, i.e. low surface tension, evaroration heat and thermal conductivity,
migh viscosity. For a known surface tension of the ligquid, the available capillarity
is determined by the used capillary structure. The exact influence of the configuration
oI the capillary structure, which is of special importance in low-power cryogenic heat
pipes (whose efficiency is always low), has not yet been fully studied for arteries
and grooves. Various kinds of arteries and grooves were tested their capillarity

“as measured, and formulae to calculate the capillary force were established.

-~ b
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TOW-2P0WIR HEAT-PIPES, TESTING, CAPILLARY FLOW)

. C. MATERIALS
=n2
5EP78 42000 CORROSION STULIES OF TUNGSTEN HEAT PIPES AT TEMPERATURES UP T2 2636°C

Geiger, F., Quataert, D., (JRC EURATOM, Ispra, Italy), Int Heat Pipe Conf, 2nd,

3ologna, Italy, VvV 1:347-356, 13 refs, Mar 31 - Apr 2, 1976, Publ by Eur Space Agency

'ESA SPll2), Noordwiik, Netherlands, 1976

Avail:TAC .
Heat pipe corrosion tests up to 2650°C have been made, using CVD-W as wall material

and Ag, Au, Cu, Ga, Ge, In and Sn as working fluids. In most of the heat pipes a

Strong mass transcort was observed, which is attributed both to solubility and thermo-

chemical impu:ity-cor:osion. The materialoconmination W/Ag turned out to be most promis-

ing. After a test of app. 6 hours at 2420 C no mass transport could be detected. How-

ever, Irom the obserwved intergranular penetration of Ag into the wall of the ccnéensation

zore, the life time of this heat pipe is estimated to be limited to about 25 hours. as

the intercgranular enrrosion mav have heen anhanced hy “he columnar gtructure ané the

gorcsity of the utilized CVD-W, longer life times could possibly be obtained with W of

inproved quality.

{TUNGSTEN ALLOYS, MASS TRANSPORT, MATEPRIALS) 19
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V. TESTING AND OPERATION

HP78 50000 INVESTIGATION OF THE 'CRISIS' OF HEAT AND MASS TRANSFER IN LOW-TEMPERATURE
WICXLESS HEAT PIPES

Bezrodnyi, M.X., Alekseenko, D.V., (Kievskii politekhnicheskii Institut, Kiev,
Ukranian, USSR), Teplofizika Vysokikh Temperatur, V 135:370-376, Mar - Apr 1977,
A77-37927, In Russian

In the experiments described, the maximal heat transfar capacity of closed
two-phase thermosipnons was studisd as a function of the geometrical parameters of
the adiabatic zone, the heat supply and heat release geome*r', the type c¢f working
fluid, the pressure in the inner cavxty, and the content of heat transfer agent in
the cavity. Water, methvl alcohol, freen-1ll, freon-113, and freon~12 were used as the
working £luid. The test results are generallzed and are used to plot the maximal
(eritical) heat flux density against the content of heat®transfer agent and other
thermosiphon parameters for each of the fluids tasted.

(ADIABATIC CCNDITICNS, FREON, METHYL ALCOHOLS, CRITICAL HEAT-FLUX)

HP78 50001 GRAVITATIONAL EFFECTS ON THE OPERATION OF A VARIABLE CONDUCTIVE HEAT
PIPE - M.S. THESIS -

Owendoff, R.S., (Naval Postgraduate School, Monterey, CA), 74 p., N77-30419
Avail: TAC

A variable conductance heat cxpe, measuring 2.5 CM Ln diameter and 152 cw

in length, was huilt. The heat pipe wa cparat:d in both the conventiconal and variable

conductance modes to obtain experzmental data concerning performance characteristics.
The input electrical power was varied from 20 to 30 watts with the heat pipe placed

in both the horizontal and vertical positions. Methanol and freon 113 were selectad

as the working fluids; helium and kryptcn were the non-condensible gases. In the
variable conductance mode, liguid crystals were used to observe gqualitatively the -
temperature gradients occurring across the vapor-gas interface. Summarized performance
data for the various operating conditions and graphs of the isotherms obtained from

the liquid crystal data are presented.

(GRAVITATIONAL FIELDS, HELIUM, LIQUID CRYSTALS)

HP78 50002 FABRICARTION AND COMPARATIVE PERFORMANCE OF THREE VARIABLE CONDUCTANCE .
HEAT PIPE CONCEPTS

Peeples, M.F., Calhoun, L.D., (McDonrell Douglas Astronaut Co, St. Louis, MO),
ASME Pap, 9 p., N77~ENAs-42 for Meet, July 1l-14, 1977
Avail:TAC

Three variable conductance heat pipes were fabricated in order to: (a) investigate
the effect of tight radius bends in the adiabatic section on heat pipe performance and
(b) compare the accuracy of temperature control provided by "&ry" and "wet" control-gas

reservoirs during variable conductance operaticn. The three heat pipes were ~eometr1ca;ly

similar, each having a 30.2 CM evapo*ator, a 12.7 CM adiabatic section, and a 16.8 CM
condenser. They wers 2ach bent on a 2.3 CM radius in -“he adiabatic section &5 form

a J-shape. Tilt tests, run to estimate zero-g p»erformance, indicared a capacity of
aocrox:mate‘w 36 to 43 W-M with Freon 21 and 39 WM with armonia. The corresvonding
analytical predictions were 42 and 140 W-M, respectively. Vacuum chamber tests indi-
cated adecuate temperature control (293 + or - 29X for a beat load turn-down ratio of
10) during cyclic condenser variations between 172 and 2813°%.

(TZMPIRATURE CONTROL, TILT TESTS, LIFE-SUPPORT SYSTEMS)
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3P78 S0002 THERMAL ®GY STORAGE DEMONSTRATINN UNIT FLR YVUILLEUMIER CRYOFENIC CCOLER
< 7

ENE 2
Interim Report June 2, 1975 - august 31, 1976

Richter, R., (Xerox Electro-Optical Systems, Pasadena, CA), Feb 1977

Work performed under the thermal energy storage cdemonstration unit program is discussed.
The aralysis, design, fabrication, and testing of a thermal energy storage demonstration
unit which was to be mated to an existinq vuillaumier cooler (AFLIR) to demonstrate the con-
cept of powering such a device directly with stored thermal erergy are presented. The
thermal energy storage demeonstration unit was to be sized for deliverving 1000 watts thermal
power for one hour at a temperature of 1250 + or -25°F. The ternary eutectic 64 MGF»
-30 LIF -6 KF, which has a eutectic temperature of 1310F, was selected as the thermal energv
storaqe material. The approach and the assumptions underlying the design of the unit which
incorporates a heat pipe for the transfer of energy frem the thermal energy storage material
to the hot cylinder of the vuilleumier cooler are presented. OCetails of the fabrication
and the testing of the thermal energy storage demonstration unit are presented. The analysis
of the test data led to the conclusion that the basic design satisfied all requirements
that were established for a fest unit. The thermal energy storage material, however, was
found to apparently release its latent heat of fusion over a wider temperature range than
had been anticipated. This Zfact can be attributed to nonisothermal phase transformation .or
a bulk thermal conductivity that is lower than had been assumed for the salt

(TERNARY ZUTECTIC, LATENT HEAT, FUSICN TEMPERATURE, PHASE TRANSFORMATION)

HP78 50004 COMMERCIAL OPTIONS IN WASTE HEAT RECOVERY EQUIPMENT

Rohrer, W.M., Jr., (NBS, Washington, DC), (FEA, Washington, DC), University of Pittsburch.,
Plttsburgh, PA, Feb 1977, Waste Heat Management Guidebook, Xreider, X.G., McNeil, M.B., .
ed., NBS-Handbook - 121 :
Common types of waste heat recovery equipment used in industrial plants are dlscussed
in some detail. The cperation and :er‘o:mance characteristics of the following tvves of-
industrial heat exchangers are described: gas-to-gas units including radiation and convec-

tion recuperators,; heat wheels,; heat Dipe, heat avﬁh:nnnre, gag or liguid-to=liguid ragen-
- - = ==

erators, waste heat toilers, and heat pumps. ST T T o o
(RECUPERATORS, RADIATION, CONVECTION, INCUSTRIAL EQUIZPMENT) : f .

E278 30008 ZXPERIMENTAL STUDY OF A HEAT-PIPE WITH AN ACTIVE POROUS SUBSTANCE

Spyridonos, A.V., (Cent. Rech. Nucl., Athens, Greece), Rev. Phys. Appl., p. 439-446,
In French

No abstract available

(GYPSUM-WATER, SOLAR-HEAT-PIPE)
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SPINDFF 1977, CAPILLARY HEAT-P
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SUASGNIC VAPCR FLUX,
SUBSONIC VAPCR FLUX, FORCED CO
SURBSTANCEs SYPSUM-WATER, SULAR
SJCTISN 3TRESS, HYDRAJL IS CAPI
SUITA3ILITY: / HEAT=2 (P22, CHEM

44

FUSION HEAT"

SP ACEL AE #.

HI GH=TE4P.

022016
022C1l6
022012
022003
022002
021C03
022G02
350065
022002
022019
g22021
010000
222014
0220046
023¢C02
010000
023003
0320C01
020000
020000
022017
031000
031C30

~ 030007

0220G18

022019
021003
022021
022024
021001
050003
921001
022024
022024
0210601
022012
022021
021002
032007
023003
023003
041001
041003

- 040002

030G08
042000
053305
031005

"331003

032063
050005

030007

N1 AN
(SRS S VECY &



EJRETICAL, OPERATION, SCDIUM,
» M3D/ THERMAL CONTRIL, POAER
ONTC PACKAGING, MCOULAR PIWER
w=-TZMPERATURE, AIRCRAFT, LIFE
W-TEMPERATURE, AIRCRAFT, LIFE
SFERy EVAPSRATIVE/ STRUCTURED

£ HEAT-TRANSFER, EVAPCRATIVE
SFERy H/ EURIPE, DEVELOPMENT,
ELs OPTIMIZATIGN, GRCUND-TEST
EL, OPTIMIZATIGON, GROUND~-TEST
NGERS, HE/ HEAT REC3JVERY, AIR
ATURE, AIRCRAFT, LIFE SUPPORT
ATUREy AIRCRAFT, LIFE SUPPIRT
ROL,y TILT TESTS,y LIFE-SUPPORT
HEAT, ATMOSPHERE, MECHANITAL/
v / HEAT PIPE HEAT EXCHANGER,
LTANCES, ENERGY CGNSERVATICN,
ATFORMS, RADIATCRS, SATELLITE
ONTROL, PHASE TFANSFCRMATION,
SPACE AGENCY, BGLOGNA, ITALY,
RIABLE CONDUCTANCE, CONCEPTS,
Sy REACTIR CIOLING, HEAT-PIPE
RCRAFT, LIFZ SUPPCKT SYSTENMS,
RCRAFT, LIFE SUPPCRT SYSTEMS,
EF/ TWO-PHASE WCRKING FLJIDS.
T-PIPE, CHEMICAL FEASIBILITY,
RVATION, TEMPERATURE CONTROL»
VAPOR DUCT, CTONDENSER, TaC-P/
EUTECTIC, LATENT HEAT, FUSICN
STRY, WASTE-HEAT UTILIZATION,
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PARAMETERS, FLUID FLUWw, HEAT
IPES, ENCRGY CONVERSION, HEAT
YCLE, HEAT-PIPE TESTiINGs HEAT
LITY, ERROP ANALYSIS, LAPLACE
TE TEMPERATURE CINTRCL, PHASE
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TRANSFER, LOW-TEMPERATJRE, WIC
TRANSFER, MASS TRANSFER, DESIG
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